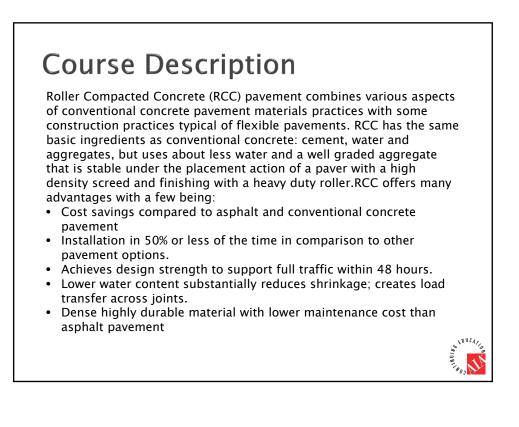
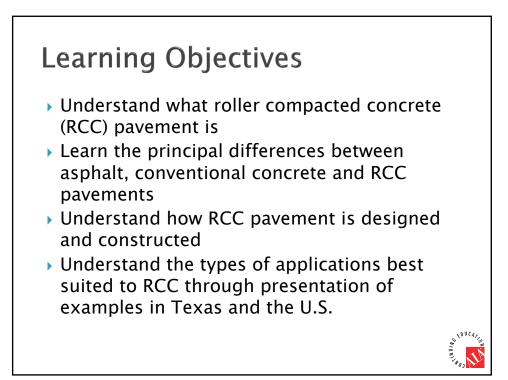
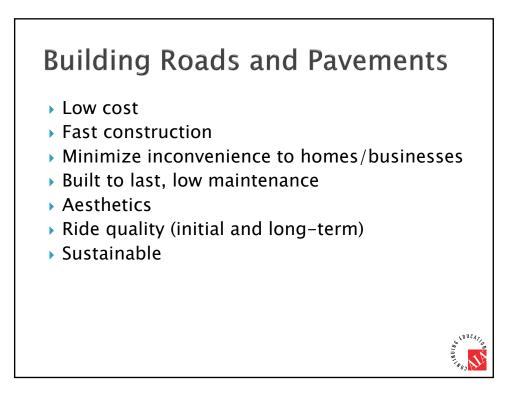
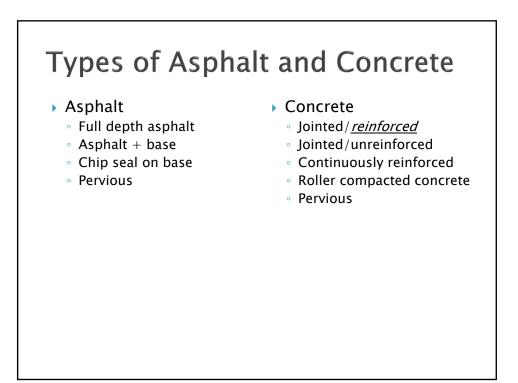
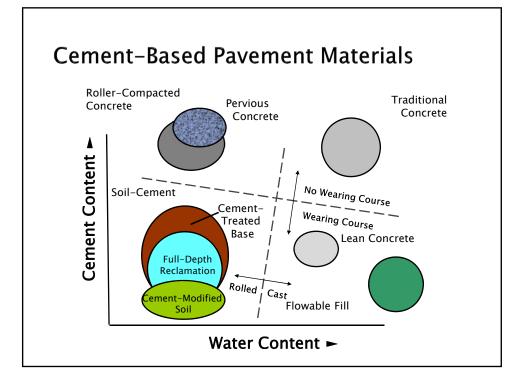

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request.

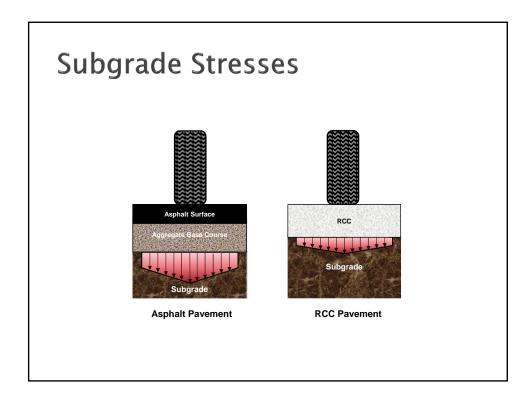

CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

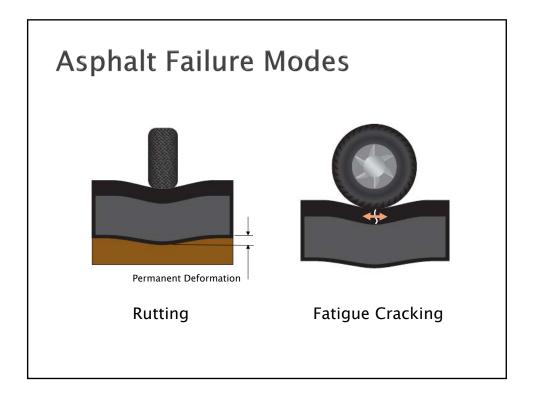

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

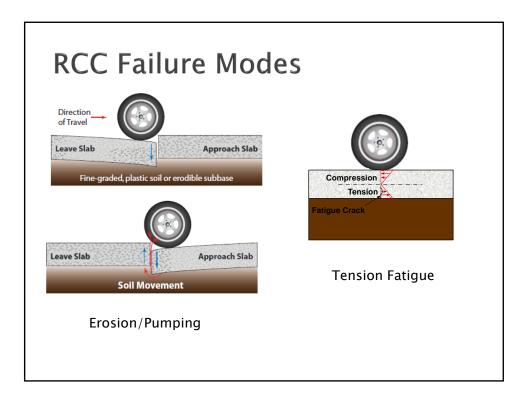

This course is registered with AIA

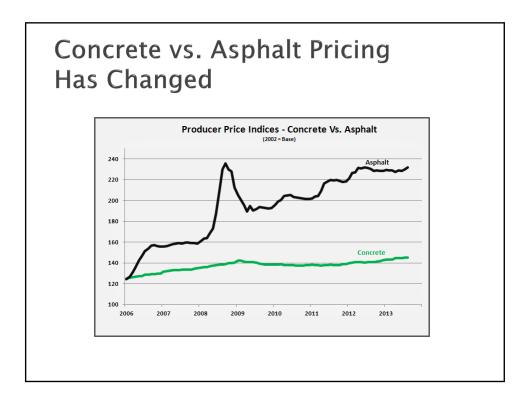


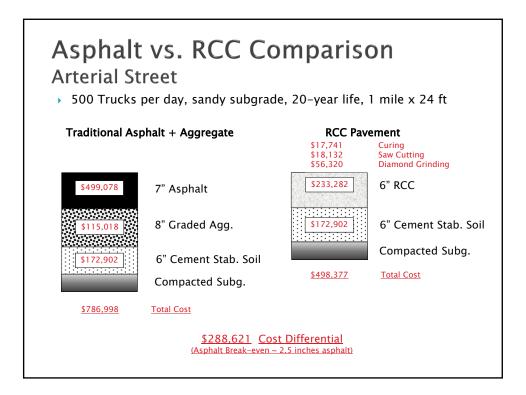

<image><image><image><image><image><image>

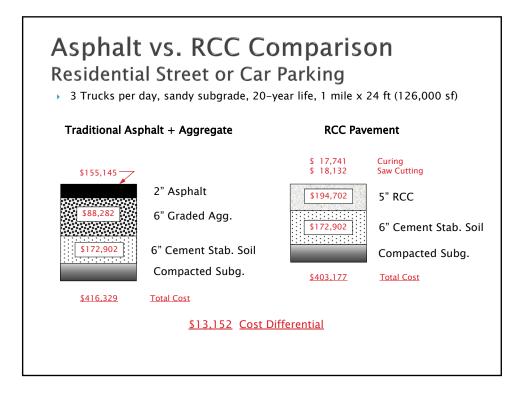


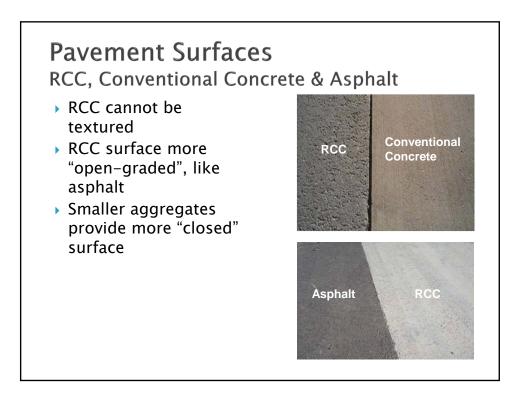

Roller Compacted Concrete

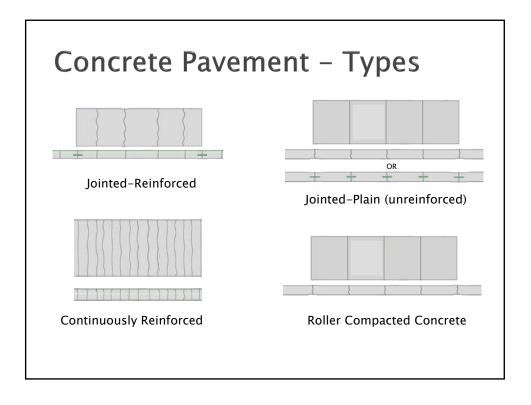

- Concrete pavement placed a different way
- No-slump concrete (very stiff)
- No forms
- No reinforcing steel
- Placed with asphalt-style pavers
- Consolidated with Vibratory Rollers
- No finishing
- Low water-cement ration (i.e. less shrinkage)

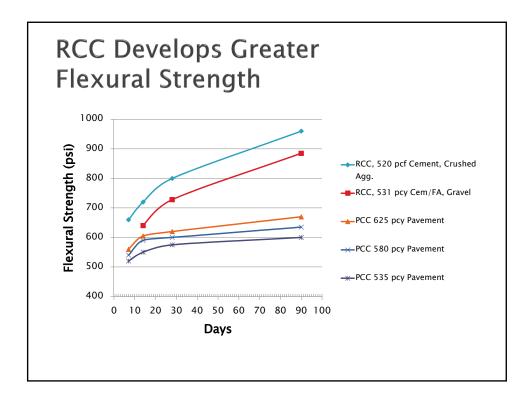


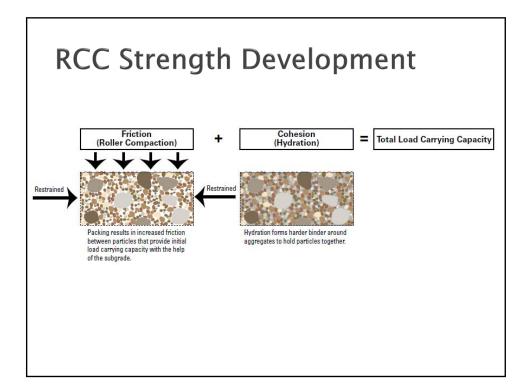


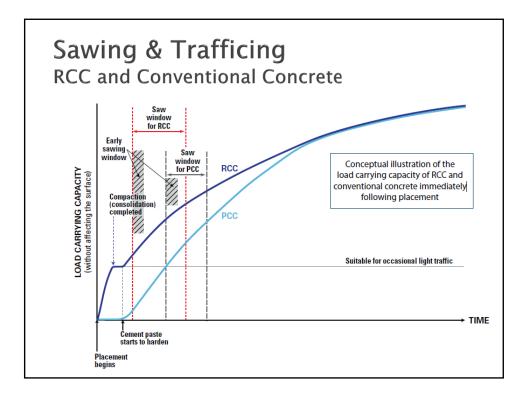


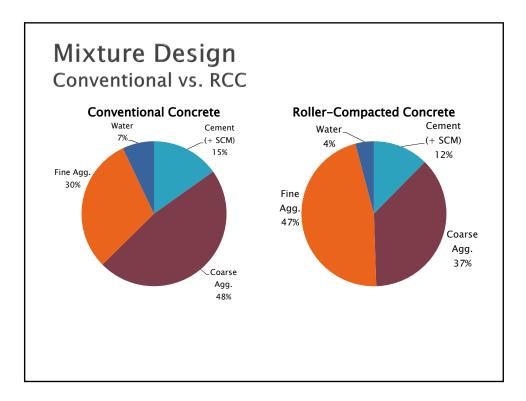



Attribute	RCC	Asphalt
Pavement Type	Rigid	Flexible
Cost	Low	
		High
Time	Fast	Slow
Inconvenience	Low	High
Use of Existing Materials	Yes	No
Permanence/ Durability	High	Moderate
Moisture Susceptibility	Low	Moderate
All-Weather Platform	High	Low
Optimization Benefits	High	Low
		*Using flex base


How Does RCC Differ from Conventional Concrete?


- Surface texture resembles asphalt, not concrete (no surface drags or tining)
- Pavement smoothness at higher speeds
- "Handwork" cannot be done w/ RCC
- No steel (dowels or reinforcing)
- Much faster construction
- Faster early trafficking


Compressive Strength3,000-6,000 psi4,000-8,000 psiFlexural Strength500-700 psi600-1000 psiElastic Modulus3-5 million psi3-6 million psiShrinkageHigherLower1-Day Strength1,500-3,000 psi2,500-4,000 psi	· · ·	4,000-8,000 psi
Elastic Modulus3–5 million psi3–6 million psiShrinkageHigherLower		
Shrinkage Higher Lower	500-700 psi	600-1000 psi
	3-5 million psi	3–6 million psi
1-Day Strength 1,500-3,000 psi 2,500-4,000 psi	Higher	Lower
	1,500-3,000 psi	2,500-4,000 psi
		Higher



Pavement Type Comparison					
Characteristic	Jointed-Reinf	Jointed-Plain	RCC	Cont. Reinf.	
Transverse joint spacing	25-100+ ft	12-20 ft	12-20+ ft	n/a	
Transverse crack spacing	12-20 ft	n/a	n/a	2-6 ft	
Joint width	~0.0204	~0.1	~0.1	~0.7	
Rut-resistant surface	Yes	Yes	Yes	Yes	
Shrinkage accounted for	Cracks/Joints	Joints	Joints	Cracks	
Reinforcing	.06-0.25%	None	None	0.4-0.85%	
"Expansion" joints used	Yes	No	No	Maybe	
Load transfer across panels	Dowel/Agg Int	Dowel/Agg Int	Dowel/Agg Int	Agg Int/Shear	
Tiebars in longitud. joints	Yes	Yes	No	Yes	
Longitudinal joint spacing	12-14 ft	12-14 ft	12-14 ft	12-14 ft	
Minimize joints	Yes	No	No	Yes	
AASHTO-62 to 93	Yes	Yes	Yes	Yes	
AASHTO DARWin-ME	NO	Yes	Yes	Yes	
TxDOT	No, but	Yes	Yes	Yes (mostly)	

Mixture Design

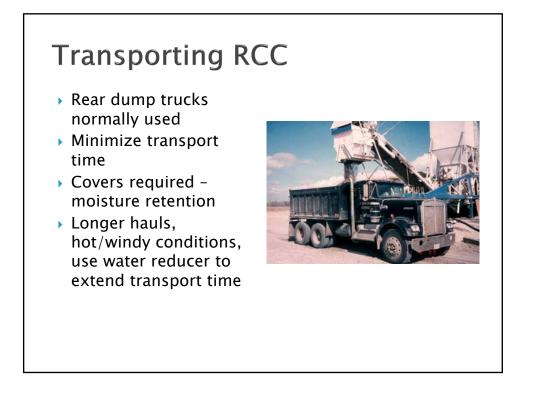
- Not proportioned in same way as conventional concrete
- Proportioning is similar to soil-cement or cement-treated aggregates
- Largest aggregate (nominal maximum size) are 1/2" or 5/8"

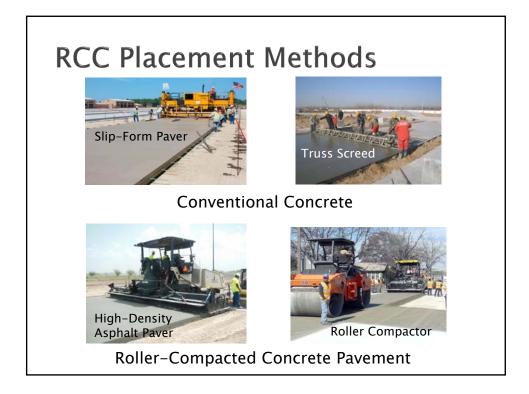
Attribute	Conventional	RCC
Air entrainment	Reg'd in F/T areas	None
Paste content	Higher	Lower
Water content	Higher	Lower
Cement content	Same/Higher	Same/Lower
Aggregate Gradation	Often gap-graded	Well-graded (similar to asphalt)
Admixtures	Water reducer, air entrainer, retarder or accelerator	Usually none, sometimes
Maximum nominal size aggregate	1 ½ to 2"	½ to 5/8"
Passing 200 sieve	0-3%	2-8%
Slump	1-3"	0
Proportioning Method	ACI 211	Soil Compaction Methods
Proportioning Goals	Strength, durability (w/cm), consistency (slump)	Strength, compatibility, durability (cement content)
Field QA/QC	Comp. cylinders or flex. beams, slump, air cont.	Comp. cylinders, density, moisture content

Benefits of RCC

RCC vs. Asphalt

- Less expensive with equivalent sections (+ project size
- Supports loads rigidly, and reduces subgrade stresses
- Less maintenance
- Placement time same or less
- Asphalt smoother because of thinner lifts
- RCC vs. Conventional Concrete
 - Less expensive (no reinforcing/dowels)
 - Faster
 - Carries light traffic in hours, can be open in 24 hours
 - But surface texture and smoothness may require grinding for higher-speed pavements


Thickness Design of **RCC** Pavements Follows rigid pavement methods Plain, un-doweled, un-reinforced concrete pavement Three methods currently used: • RCC Pave - PCA, based on COE and CTL data/mechanistic methods · Best for industrial pavements, single large loads • StreetPave - ACPA (PCA), based on PCA mechanistic methods • Best for street and parking lot design, mixed traffic • PCA-Pave (beta) - PCA beta, based on PCA/TTI research using layer-elastic methods Best for analysis/design single and mixed traffic (experimental/research use, verification)



Cure (curing compound or water)

RCC Production Methods Comparisons				
Attribute	Pug Mill	Horiz. Twin Shft	Central Mix/Batch	Dry Batch
Prod'n rate	50-300+ cy/hr	50-200 cy/hr	30-90 cy/hr	<50 cy/hr
Batching	Continuous	Batch	Batch	Batch
Mix efficiency	High/fast	High/fast	Moderate	Slow
Mix consistency	Excellent	Excellent	Good	Moderate
Moisture consistency	Excellent	Good	Moderate	Poor
Mobility	1-day set-up	1-day set-up	Semi-mobile	Stationary
Considerations	Best method for high, consistent production, but mobilization \$	Flexibile, easy add-on to dry batch; needs batch system	Avail in some metro areas and highway contr.	Plant/trucks "dedicated" to RCC; much slower than conv. Conc.
Best for	Large jobs (25k sy+), multiple jobs in close proximity	Small to large jobs	Small to medium jobs	Small jobs or demo

	cement Metho and High-Density A	
Attribute	Standard Asphalt Paver	High–Density Paver
Compaction Method	Vibrating Screed/Tamping Bars	Heavy-duty dual tamping bars/vibrating screed
Initial compaction	85-90%	90-98%
Max. lift thickness	6-8"	10"
Prod'n Rate	Low to moderate (varies)	High (1,200 Tons/Hr)
Availability	All Areas	Limited, RCC Contractors
Roll-down	\geq 1" (less grade control)	<1"
Surface Smoothness	Moderate	High
Max. Paving Width	Varies (to 30'+)	То 50'

RCC Compaction

- Compaction is critical
- Compact to 98% of modified proctor (ASTM D1557)
- Vibratory/nonvibratory roller
- Rubber-tire roller

RCC Curing

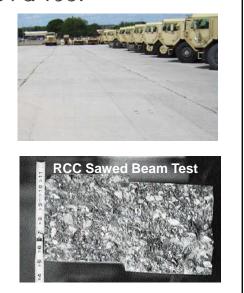
- Curing is critical
 - As with all concrete
 - But RCC has lower water content, no "bleeding"
- Curing starts as soon as compaction is completed
- Three methods:
 - Moist cure
 - Curing compound
 - Asphalt emulsion

- RCC surface has aggregates visible (similar to asphalt)
- Textures not possible (e.g. broom, tining)
- Smaller aggregates promote more "closed" texture
- Smoothness good to ~45 mph (less for standard paver)
- Diamond grinding for higher-speed traffic, and texture.

QC/QA for RCC

- Aggregate gradation (sieve analysis)
- Density (nuclear gauge)
- Compression cylinders (ASTM C1435, for RCC)
- Moisture (microwave/oven dried)
- Beams not normally used (no casting standard, difficult to cut)

Manholes & Curbs


- Curb & Gutter
 - Placed before RCC
 - Serves as compaction aid
 - Seal joint
 - Or drill and route rebar into cold RCC, and place ribbon curb afterwards
- Manholes, Inlets
 - Plywood on RCC before construction
 - Saw RCC, fill w/ conventional concrete

Tank Hardstand and Helipad Fort Hood, Texas - 1984 & 1987

- First large RCC in U.S.
- 18,000 sy, 10" thick, \$58/sy at time
- 300 lb cement, 160 lb FA
- 1 ½" aggregate had some segregation
- ▶ ¾" agg test area better
- Placed in very hot, windy weather
- Natural cracks
- Flex strength of 800– 900 psi

Central Freight Distribution Ctr.

Austin, Texas - 1987

- Truck terminal
 - 7" & 8" pavements
 - 90,000 sy
 - RCC bid 25% less than asphalt
- Natural cracks
 - 23-50' spacing
 - Routed/sealed @ 5 yr
- Continuous use, little maintenace @ 26 yrs:
 - Still performing: 500-1,000 trucks/day
 - 1 "failure" (subgrade)
 - Some joints opening, small faulting
 - Could grind/reseal

<section-header><section-header><image><image><image>

Port Staging Site Corpus Christi

- > 2 Acres
- ▶ 1993

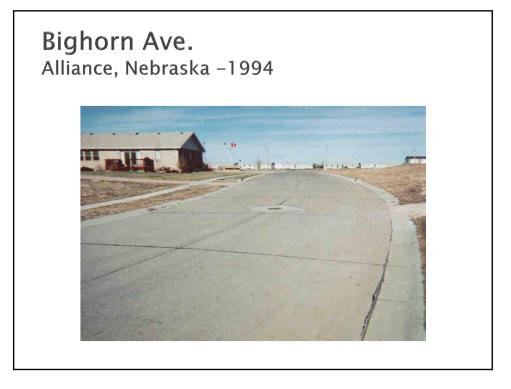
Los Tomates Border Station

Brownsville

- 1999
- 15 Acres
- 10 in, 2 lifts
- 5000 psi
- 520 lbs cement
- Sawed joints

City Arterials San Angelo, TX - 2011 & 2012

- Grape Creek Road: 15,000 sy
- > 50th Street: 30,000 sy
- ▶ 50-year design life
- Years of deferred maintenance on asphalt roads
- > 75 yr maintenance:
 - Asphalt (8 yr sealcoat + 24-year mill/o'lay) = \$7.5M
 - RCC (overlay @ 50-60 yrs = 1.4 M)


Port of Houston

Bayport Container Terminal - 2007 to 2012

- Largest RCC site in U.S.
 45, 48, 35 acres 2007,09, 12
- 14 and 18" RCC
 - 2–lift construction
 - 30 yr design
 - 8" CTB
 - 4" pervious drainage
 - 12" lime/cement subgrade
- Production:
 - 8-11 acres/month RCC
 - 2 acres/month PCC (2004 60 acre project)
- Costs:
 - RCC \$45-\$72/sy (18")
 - PCC \$65-\$100/sy (15")
 - 2009 alt: \$32.2 Conv. vs. \$27.5M RCC (15% savings)

Pioneer Natural Resources Victoria, TX - 2013 • Pipe fabrication for Eagle Ford oil/gas ▶ 60 acres Originally 15" unsurfaced aggregate Replaced with 7" RCC on stabilized base > 20% cost savings Significant maintenance savings Owner cited less risk/cleanup in fuel/oil spills ▶ 60 acres placed in less than two months

- Over 30 developments
- RCC serves as pavement structure
- Thin asphalt surface (not really needed)
- Roads not destroyed during subdivision development phase

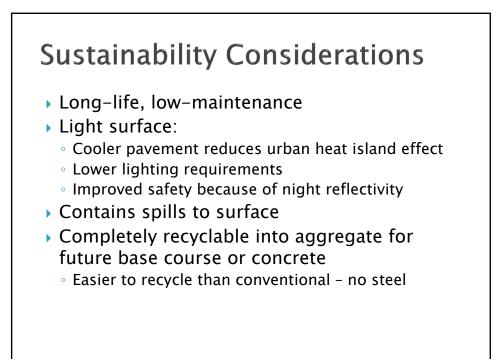
Farm-to-Market Road South Carolina DOT - 2001

Beltway Shoulders (I-285) Atlanta, GA - 2004

- Georgia DOT
- Outside shoulder reconstruction (10' wide)
- > 17.3 miles (n & s)
- ▶ 38,500 cy
- Mainline traffic volume to 155,000 vpd.

Lowe's Distribution Center Rome, Georgia – 2012

- 69 Acres
- ▶ 65,000 cy
- 7" RCC on 6" aggregate base
- ▶ 400 trucks/day
- Paved 30' wide, 150 to 180 cy/hr
- RCC paving completed in 2 months
- Saved \$3.5M vs. asphalt with concrete dolly strips



Richland Ave (US 78) Aiken, South Carolina - 2009

- South Carolina DOT
- Milled 10" asphalt, replaced with 10" RCC
- Traffic: 6,000 ADT, 4 lanes45 mph
- Replaced 27,500 sy in 15 days
- All milled arease were paved within same day
- Maintained 1 lane open in each direction
- > 20' saw-cut joints (3 hrs)
- Open to traffic @ 24 hrs

Parting Thoughts

- TxDOT
 - Spec approved
 - $^\circ\,$ First project, Brownwood Safety Rest Area, 2014
- Project specifications
- Contractor availability in Texas
- Cement Council of Texas can help

Thank You!

- Questions?
- Jan R. Prusinski, P.E., LEED AP
 - Cement Council of Texas
 - 817-540-4437
 - jprusinski@cementx.org
 - www.cementx.org